You can edit almost every page by Creating an account. Otherwise, see the FAQ.

جریان مولکولی آزاد

از EverybodyWiki Bios & Wiki
پرش به:ناوبری، جستجو

جریان مولکولی آزاد دینامیک سیال گاز را در جایی که میانگین مسیر آزاد مولکول ها بزرگتر از اندازه محفظه یا جسم مورد آزمایش است، توصیف می کند. برای لوله ها / اشیاء به اندازه چند سانتی متر، این به معنای فشار بسیار کمتر از 10-3 mbar است. به این رژیم خلاء زیاد یا حتی خلاء فوق‌العاده نیز می‌گویند. این با جریان چسبناکی که در فشارهای بالاتر مواجه می شود مخالف است[۱]. وجود جریان مولکولی آزاد را می توان حداقل در تخمین با عدد نادسن (Kn) محاسبه کرد. اگر Kn> 10 باشد، سیستم در جریان مولکولی آزاد است [۲] که به عنوان جریان نادسن نیز شناخته می شود.[۳]

در جریان مولکولی آزاد، فشار گاز باقی مانده را می توان به طور موثر صفر در نظر گرفت. بنابراین، نقطه جوش به فشار باقیمانده بستگی ندارد. جریان را می توان ذرات جداگانه ای در نظر گرفت که در خطوط مستقیم حرکت می کنند. عملاً "بخار" نمی تواند در اطراف خم ها یا فضاهای دیگر پشت موانع حرکت کند، زیرا آنها به سادگی به دیواره لوله برخورد می کنند. این بدان معناست که پمپ های معمولی نمی توانند مورد استفاده قرار گیرند، زیرا آنها به جریان ویسکوز و فشار سیال متکی هستند. در عوض، از پمپ های جذب ویژه، پمپ های یونی و پمپ های انتقال مومنتوم یعنی پمپ های توربومولکولی استفاده می شود.

جریان مولکولی آزاد در فرآیندهای مختلفی مانند تقطیر مولکولی، تجهیزات خلاء فوق العاده بالا مانند شتاب دهنده های ذرات و به طور طبیعی در فضای بیرونی رخ می دهد.

تعریف جریان مولکولی آزاد به مقیاس فاصله مورد بررسی بستگی دارد. به عنوان مثال، در محیط بین سیاره ای، پلاسما در یک رژیم جریان مولکولی آزاد در مقیاس های کمتر از 1 AU قرار دارد. بنابراین، سیارات و قمرها به طور موثر تحت بمباران ذرات هستند. با این حال، در مقیاس های بزرگتر، رفتار سیال-مانند مشاهده می شود، زیرا احتمال برخورد بین ذرات قابل توجه می شود.

این ایده که مواد را می‌توان به‌عنوان پیوسته در نظر گرفت، به فرد اجازه می‌دهد تا معادلات بقای جرم، تکانه و انرژی را فرموله کند که در آن همه متغیرها تابع‌های پیوسته فضا هستند. بنابراین، با کمک فرضیه پیوستار، می‌توان از چگالی صحبت کرد. از یک ماده در نقطه ای از فضا، در حالی که، از نظر مولکولی، در واقع ممکن است هیچ مولکولی در آن نقطه وجود نداشته باشد، بنابراین مفهوم چگالی معنایی ندارد. این ایده که مواد را می‌توان به‌عنوان پیوسته در نظر گرفت، بر این واقعیت استوار است که در هر عنصر حجمی که در مقیاس عملی کوچک است، تعداد بسیار زیادی مولکول (تقریباً 1016 در میلی‌متر مکعب) وجود دارد[۴]. بنابراین، برای بسیاری از اهداف، می توان حجم به اندازه کافی کوچک را یافت که همچنان حاوی تعداد کافی مولکول باشد که ماهیت مولکولی گسسته ماده خود را آشکار نکند[۵].

با این حال، تحت شرایط خاص، فرضیه پیوسته نامناسب است. چنین شرایطی زمانی اتفاق می‌افتد که فاصله بین مولکول‌ها یا به عبارت صحیح‌تر، میانگین مسیر آزاد که آنها بین برخورد با مولکول‌های دیگر طی می‌کنند، λ، با برخی از ابعاد فیزیکی ظرف کانال جریان، d (λ/d ~ 1) قابل مقایسه باشد. ). به طور طبیعی، این اغلب زمانی رخ می دهد که چگالی گاز بسیار کم است و هنگامی که گاز با سطوح جامد با ساختاری در مقیاس کوچک مانند یک جامد متخلخل یا یک لوله مویین در تعامل است. در چنین شرایطی، مولکول‌های گاز ممکن است به همان اندازه که با سایر مولکول‌ها انجام می‌دهند با سطح جامد برهمکنش داشته باشند و یکی از آنها رژیم انتقالی نامیده می‌شود. با کاهش بیشتر چگالی گاز، برخورد مولکول‌ها با دیواره‌ها کاملاً بر فرآیندها غالب می‌شود و زمانی که λ/d >> 1 به مولکول آزاد یا رژیم نادسن می‌رسد. نسبت λ/d را عدد نادسن، Kn می‌نامند[۶].

راه حل نظری مشکلات جریان گاز برای اعداد نادسن بسیار بالا (رژیم مولکولی آزاد) بسیار متفاوت از روشی است که معمولاً در رابطه با هیدرودینامیک رسانه‌هایی که تراکم‌های عددی بالاتری دارند، اغلب محققان به کار با آن‌ها عادت دارند. چارچوب‌های نظری که در این افراط‌ها با آن مواجه می‌شوند، از طریق روابط بنیادی مختلف بین نظریه جنبشی گازها و مکانیک رسانه‌هایی که رفتارهای نوع پیوسته را نشان می‌دهند (رژیم پیوسته) به هم متصل می‌شوند. معادلات پیوسته را می‌توان از معادله بولتزمن به‌دست آورد اگر از مجموع ثابت‌های برخوردها به‌عنوان خواص مولکولی برای ساختن یک سیستم معادلات گشتاور استفاده کنیم. با این حال، این سیستم گشتاور نامشخص است، مگر در صورت آشنایی با روابط بین مقادیر پایه هیدرودینامیکی و تانسور تنش یا بردار شار حرارتی.[۷] این روابط را می توان با استفاده از روش چاپمن-انسکوگ حل معادله بولتزمن به دست آورد. در رژیم پیوسته بسیار مهم است که مشخصات گاز مانند ویسکوزیته و ضرایب هدایت حرارتی مستقل از شرایط مرزی تعیین شوند.[۸]

فیلتراسیون هوا در رژیم جریان مولکولی آزاد (FMF) مهم و چالش برانگیز است زیرا زمانی که قطر فیبر کوچکتر از میانگین مسیر آزاد گاز در رژیم FMF باشد، راندمان فیلتراسیون بالاتر و افت فشار کمتر به دست می آید. [۹] مدل‌های ساختاری فیلترهای هوای ذرات با راندمان بالا (HEPA) بر اساس CNT‌ها معرفی شده‌اند. افت فشار در فیلترهای هوا که در رژیم FMF کار می کنند کمتر از آن چیزی است که توسط نظریه فیلتراسیون هوای معمولی پیش بینی شده است. نازک ترین فیلترهای HEPA ساخته شده از فیلم های تک جداره CNT دارای افت فشار بسیار کم هستند. [۱۰]

جستارهای وابسته[ویرایش]

منابع[ویرایش]


This article "جریان مولکولی آزاد" is from Wikipedia. The list of its authors can be seen in its historical and/or the page Edithistory:جریان مولکولی آزاد. Articles copied from Draft Namespace on Wikipedia could be seen on the Draft Namespace of Wikipedia and not main one.

  1. Yamamoto, K.; Pack, D. C.; Transient free molecular flow through a tube; Rarefied gas dynamics; Proceedings of the Eleventh International Symposium, Cannes, France, July 3-8, 1978. Volume 1. (A80-34876 14-77) Paris, Commissariat a l'Energie Atomique, 1979, p. 207-218.
  2. Laurendeau, Normand M. (2005). Statistical thermodynamics : fundamentals and applications. New York: Cambridge University Press. p. 434. ISBN 0-521-84635-8. OCLC 71819273
  3. Sundén, Bengt; Fu, Juan (2016). Heat Transfer in Aerospace Applications. Elsevier Ltd. p. 61. ISBN 978-0-12-809761-8. OCLC 961337485
  4. Daniel W. Mackowski, Monte Carlo simulation of hydrodynamic drag and thermophoresis of fractal aggregates of spheres in the free-molecule flow regime, Journal of Aerosol Science, Volume 37, Issue 3,2006, 242-259
  5. In: Rarefied Gas Dynamics: Fundamentals, Simulations and Micro Flows, edited by D. Mewes and F. Mayinger Springer Berlin Heidelberg 2005 DOI 10.1007/3-540-27230-5_5
  6. Free Molecule Flow; Wakeham, W.A.; 16 march 2011
  7. Chambre, Paul A. and Schaaf, Samuel A.. "Chapter 2. Free Molecule Flow". Flow of Rarefied Gases, Princeton: Princeton University Press, 1961, pp. 8-24. https://doi.org/10.1515/9781400885800-003
  8. (2007). The Free-Molecular Regime. In: Ivchenko, I.N., Loyalka, S.K., Tompson, R.V. (eds) Analytical Methods for Problems of Molecular Transport. Fluid Mechanics and Its Applications, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5865-3_7
  9. FREE MOLECULE FLOW THEORY AND ITS APPLICATION TO THE DETERMINATION OF AERODYNAMIC FORCES; L. H. Sentman; 1961
  10. Li P, Wang C, Zhang Y, Wei F. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes. Small. 2014 Nov;10(22):4543-61. doi: 10.1002/smll.201401553. Epub 2014 Oct 6. PMID: 25288476.


Read or create/edit this page in another language[ویرایش]